

802.11ax Channel Access

Jim Vajda, CWNE #183

The Complete Picture

- Not just OFDMA
- The old and the new, the full channel access protocol
- Update on what's really happening in the air today, not all the methods 802.11 allows
- Understanding channel access is fundamental to making sound design decisions

Legacy EDCA plus...

802.11ax HE SU Start to Finish

Downlink OFDMA Start to Finish

Uplink OFDMA Start to Finish

802.11ax New Channel Access Features

- BSS Coloring
- Spatial Reuse Operation
- Dual NAV
- MU-EDCA Parameters
- Preamble Puncturing (not implemented)
- OFDMA
 - Carrier Sense within OFDMA
 - UL OFDMA Random Access (UORA, not implemented)
- Wide channel access procedures

Available for free download via IEEE GET Program

BSS Coloring

- Fuzzy term, but in 802.11 its just the BSS Color Fields
- Doesn't do anything on its own
- Mandatory for all HE STA's

```
Radiotap Header v0, Length 82
    Header revision: 0
    Header pad: 0
    Header length: 82
  > Present flags
  > Flags: 0x10
    Channel frequency: 5500 [A 100]
  > Channel flags: 0x0140, Orthogonal Frequency-Division Multiplexing (OFDM), 5 GHz spectrum
    Antenna signal: -17 dBm
  > RX flags: 0x0000
  > A-MPDU status
  > timestamp information
  HE information
    > HE Data 1: 0xc7fc, PPDU Format: HE_SU, BSS Color known, Beam Change known, UL/DL known, data MCS known, d
    > HE Data 2: 0x007e, GI known, LTF symbols known, Pre-FEC Padding Factor known, TxBF known. PE Disambiguity
    HE Data 3: 0x2be1, Coding: LDPC
         .... .... ..10 0001 = BSS Color: 0x21
          .... = Beam Change: 0x1
          .... 1... = UL/DL: 0x1
          .... 1011 .... = data MCS: 0xb
          ...0 .... = data DCM: 0x0
          \dots1. \dots = Coding: LDPC (0x1)
          .0.. .... = LDPC extra symbol segment: 0x0
          0... = STBC: 0x0
    > HE Data 4: 0x0000
    > HE Data 5: 0xb082, data Bandwidth/RU allocation: 80, GI: 0.8us, LTF symbol size: 2x, LTF symbols: 1x
    > HE Data 6: 0x0c02, NSTS: 2 space-time streams
  > L-SIG
```


This Photo by Unknown Author is licensed under CC BY-SA

Spatial Reuse Operation (SRO)

Dual NAV

Dual NAV

Dual NAV & Spatial Reuse Operation

80 MHz Channel Access Differences

MU-EDCA Parameters

MU-EDCA Parameters

```
> Ext Tag: Spatial Reuse Parameter Set
Ext Tag: MU EDCA Parameter Set
     Tag Number: Element ID Extension (255)
     Ext Tag length: 13
     Ext Tag Number: MU EDCA Parameter Set (38)
   > QoS Information (AP): 0x00
  MUAC BE Parameter Record
     V AIC/AIFSN: 0x08
           .... 1000 = AIFSN: 8
           ...0 .... = Admission Control Mandatory: No
           .00. .... = ACI: Best Effort (0)
           0... = Reserved: 0
                                                                     MUAC BE
        ECWmin/ECWmax: 0xa9 (9/10)
                                                                     parameters usually
        MU EDCA Timer: 0xff (255 x 8 TU = 261 ms)
  > MUAC_BK Parameter Record
                                                                     require longer AIFS
  > MUAC VI Parameter Record
                                                                     and CW than WMM
  > MUAC VO Parameter Record

√ Tag: Vendor Specific: Microsoft Corp.: WMM/WME: Parameter Element

                                                                     AC BE
     Tag Number: Vendor Specific (221)
     Tag length: 24
     OUI: 00:50:f2 (Microsoft Corp.)
     Vendor Specific OUI Type: 2
     Type: WMM/WME (0x02)
     WME Subtype: Parameter Element (1)
     WME Version: 1
  > WME OoS Info: 0x80
     Reserved: 00
  Ac Parameters ACI 0 (Best Effort), ACM no, AIFSN 3, ECWmin/max 4/10 (CWmin/max 15/1023), TXOP 0
     V ACT / ATESN Field: 0x03
           .... 0011 = AIFSN: 3
           ...0 .... = Admission Control Mandatory: No
           .00. .... = ACI: Best Effort (0)
           0... = Reserved: 0
     > ECW: 0xa4
        TXOP Limit: 0
```

After a client was scheduled for UL OFMDA it uses MU EDCA parameters for channel access (per AC), not WMM IE parameters, until MU EDCA timer expires

MU-EDCA Parameters

```
> Ext Tag: HE Operation
Ext Tag: MU EDCA Parameter Set
     Tag Number: Element ID Extension (255)
     Ext Tag length: 13
     Ext Tag Number: MU EDCA Parameter Set (38)
   > OoS Information (AP): 0x00
   MUAC_BE Parameter Record
     AIC/AIFSN: 0x00
           .... 0000 = AIFSN: 0
           ...0 .... = Admission Control Mandatory: No
           .00. .... = ACI: Best Effort (0)
           0 \dots = Reserved: 0
        ECWmin/ECWmax: 0xa4
        MU FDCA Timer: 0x08
   MUAC_BK Parameter Record
     AIC/AIFSN: 0x20
           .... 0000 = AIFSN: 0
           ...0 .... = Admission Control Mandatory: No
           .01. .... = ACI: Background (1)
           0... = Reserved: 0
        ECWmin/ECWmax: 0xa4
        MU EDCA Timer: 0x08
   MUAC_VI Parameter Record
     AIC/AIFSN: 0x40
           .... 0000 = AIFSN: 0
           ...0 .... = Admission Control Mandatory: No
           .10. .... = ACI: Video (2)
           0... = Reserved: 0
        ECWmin/ECWmax: 0x43
        MU EDCA Timer: 0x08
   MUAC_VO Parameter Record
```

MU EDCA AIFSN = 0, no EDCA is allowed for that AC until timer expires (64 ms)

> 6 GHz only has HE clients, so we can be more aggressive with MU EDCA parameters to increase channel access for AP scheduled TXOP's

Channel Access Complexity

- More time spent checking, more opportunity to be blocked
- More channels to check, more opportunity to be blocked
- OBSS band aids don't change WLAN design fundamentals
- Good design is more important than ever to accommodate the increase in channel access complexity

This Photo by Unknown Author is licensed under CC BY-SA-NC

Special thanks to Gjermund Raaen, Josh Schmelzle, and David Rice

Slides available on Twitter @7SIGNAL